FOMP 10 Final Review Part 1 v1

Answer Section

SHORT ANSWER

1. ANS:

SI system

PTS: 1 DIF: 1-2
TOP: SI Measurement
2. ANS:
metre
PTS: 1 DIF: 1-2
TOP: SI Measurement
3. ANS:
inch
PTS: 1
DIF: 1-2
TOP: Imperial Measurement
4. ANS:

17 cm
PTS: 1 DIF: 1-2
TOP: SI Measurement
5. ANS:
centimetre
PTS: 1 DIF: 1-2
TOP: SI Measurement
6. ANS:
trundle wheel
PTS: 1 DIF: 1-2
TOP: SI Measurement
7. ANS:
inch
PTS: 1 DIF: 1-2
TOP: Imperial Measurement
8. ANS:

30
$10 y d \frac{3 f t}{1 y d} \frac{12 \text { in }}{1 f t} \frac{1 \text { bouquet }}{12 \text { in }}=30$ bouquets

PTS: 1
DIF: 1-2
TOP: Imperial Measurement

OBJ: Section 1.1 NAT: M1
KEY: SI

OBJ: Section 1.1 NAT: M1
KEY: metre | SI

OBJ: Section 1.2 NAT: M1
KEY: imperial | inch

OBJ: Section 1.1 NAT: M1
KEY: estimate | perimeter | SI

OBJ: Section 1.1 NAT: M1
KEY: estimate | SI

OBJ: Section 1.1 NAT: M1
KEY: measuring instruments | trundle wheel

OBJ: Section 1.2 NAT: M1
KEY: imperial | inch
9. ANS:
9.8 in.
$25 \mathrm{~cm} \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=9.8 \mathrm{in}$
PTS: 1 DIF: 1-2 OBJ: Section 1.3 NAT: M1|M2
TOP: Converting Between SI and Imperial Systems
KEY: centimetre | conversion | imperial | inch | SI
10. ANS:
8.23 m
$9 y d \cdot \frac{.9144 \mathrm{~m}}{1 y d}=8.23 \mathrm{~m}$
PTS: 1 DIF: 1-2 OBJ: Section 1.3 NAT: M1|M2
TOP: Converting Between SI and Imperial Systems
KEY: conversion | imperial to SI | yards to metres
11. ANS:
3.05 m
$10 f t \frac{1 y d}{3 f t} \cdot \frac{.9144 \mathrm{~m}}{1 y d}=3.05 \mathrm{~m}$

PTS: 1 DIF: 1-2 OBJ: Section 1.3 NAT: M1|M2
TOP: Converting Between SI and Imperial Systems
KEY: conversion | imperial to SI | feet to metres
12. ANS:
$2.7 \mathrm{ft}^{2}$
area $=85 \mathrm{~cm} * 30 \mathrm{~cm} \frac{(1 \mathrm{in})^{2}}{(2.54 \mathrm{~cm})^{2}} \frac{(1 \mathrm{ft})^{2}}{(12 \mathrm{in})^{2}}=2.7 \mathrm{ft}^{2}$
PTS: 1 DIF: 1-2 OBJ: Section 2.1 NAT: M1
TOP: Units of Area and Volume KEY: conversion factors | convert SI to imperial
13. ANS:
$S A=2 \pi r^{2}+2 \pi r h$

PTS: 1
TOP: Surface Area
DIF: 1-2
14. ANS:
$1809.6 \mathrm{~cm}^{2}$
$S A=4 \pi(12 \mathrm{~cm})^{2}=1809.6 \mathrm{~cm}^{2}$
PTS: 1 DIF: 1-2
TOP: Surface Area

OBJ: Section 2.2 NAT: M3
KEY: formula | right cylinder | surface area

OBJ: Section 2.2 NAT: M3|AN3
KEY: calculate surface area $|\mathrm{SI}|$ sphere
15. ANS:
$V=\frac{1}{3} \pi r^{2} h$
PTS: 1 DIF: 1-2 OBJ: Section 2.3 NAT: M3
TOP: Volume KEY: formula | right cone | volume
16. ANS:
$201 \mathrm{~cm}^{2}$
$2 \pi * 4 \mathrm{~cm} * 8 \mathrm{~cm}=201 \mathrm{~cm}^{2}$
PTS: 1 DIF: 1-2 OBJ: Section 2.2 NAT: M3
TOP: Surface Area
KEY: calculate surface area | problem solving | right cylinder | SI
17. ANS:
2.000

PTS: 1 DIF: 1-2 OBJ: Section 3.1 NAT: M4
TOP: The Tangent Ratio
KEY: tangent ratio | calculate a tangent ratio | right triangle
18. ANS:
$\cos \mathrm{A}=\frac{\text { length of side adjacent to } \angle \mathrm{A}}{\text { length of hypotenuse }}$
PTS: 1
DIF: 1-2
TOP: The Sine and Cosine Ratios
OBJ: Section 3.2 NAT: M4
KEY: cosine ratio | define the cosine ratio
19. ANS:
0.5878

PTS: 1 DIF: 1-2
TOP: The Sine and Cosine Ratios
OBJ: Section 3.2 NAT: M4
KEY: sine ratio \mid calculate a sine ratio
20. ANS:
0.5150

PTS: 1
DIF: 1-2
TOP: The Sine and Cosine Ratios
OBJ: Section 3.2 NAT: M4
KEY: sine ratio | calculate a sine ratio
21. ANS:
47°
PTS: 1 DIF: 1-2
TOP: The Sine and Cosine Ratios
22. ANS:
14°
PTS: 1
DIF: 1-2
TOP: The Sine and Cosine Ratios

OBJ: Section 3.2 NAT: M4
KEY: sine ratio | determine an angle measure
23. ANS:
$\frac{64}{15}$

PTS: 1 DIF: 1-2
TOP: Integral Exponents
OBJ: Section 4.2 NAT: AN3
KEY: integral exponent | order of operations
24. ANS:
$\frac{1}{3}$

PTS: 1
DIF: 1-2
TOP: Integral Exponents
25. ANS:

0
$=1-1=0$

PTS: 1 DIF: 1-2
TOP: Integral Exponents
OBJ: Section 4.2 NAT: AN3
KEY: exponent laws | zero exponent
26. ANS:

14

PTS: 1
DIF: 1-2
TOP: Rational Exponents
OBJ: Section 4.3 NAT: AN3
KEY: rational exponent
27. ANS:
$264^{\frac{1}{3}}$

PTS: 1 DIF: 1-2
TOP: Irrational Numbers
28. ANS:
$\sqrt{11 h}$
PTS: 1 DIF: 1-2
TOP: Irrational Numbers

OBJ: Section 4.4 NAT: AN3
KEY: convert radical to power
29. ANS:
a)
area $=3.5 \mathrm{~cm} \frac{10 \mathrm{~mm}}{1 \mathrm{~cm}} * 5.5 \frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}=1925 \mathrm{~mm}^{2}$
b)
area $=35 \mathrm{~mm} \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}} * 70 \mathrm{~mm} \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}=0.00245 \mathrm{~m}^{2}$

PTS: 1 DIF: 1-2
OBJ: Section 2.1 NAT: M1
TOP: Units of Area and Volume
KEY: convert within the SI system
30. ANS:
a) $V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \pi(2.2)^{2}(6.4)$
$V=\pi(10.325 \ldots)$
$V=32.436 \ldots$
The volume of the cone is approximately $32.4 \mathrm{~cm}^{3}$.
b) $V=\frac{4}{3} \pi r^{3}$
$V=\frac{4}{3} \pi(5.8)^{3}$
$V=\pi(260.149 \ldots)$
$V=816.867 \ldots$
The volume of the sphere is approximately $816.9 \mathrm{ft}^{3}$.
PTS: 1 DIF: 1-2 OBJ: Section 2.3 NAT: M3|AN3
TOP: Volume KEY: calculate volume | imperial | right cone | SI | sphere
31. ANS:
opposite
PTS: 1 DIF: 1-2
OBJ: Section 3.1 NAT: M4
TOP: The Tangent Ratio
KEY: right triangle | hypotenuse
32. ANS:

Let h represent Max's height, in metres.

$$
\begin{aligned}
\tan 48^{\circ} & =\frac{\text { height of Max }}{\text { distance from Max to dog }} \\
\tan 48^{\circ} & =\frac{h}{1.2} \\
1.2\left(\tan 48^{\circ}\right) & =h \\
1.3327 \ldots & =h
\end{aligned}
$$

Max is about 1.3 m tall.
PTS: 1 DIF: 1-2
OBJ: Section 3.3 NAT: M4
TOP: Solving Right Triangles
KEY: tangent ratio \mid determine a distance using an angle of elevation | determine a distance using trigonometry
33. ANS:

Let x represent the angle, in degrees, that the cable makes with the ground.

$$
\begin{aligned}
\cos x & =\frac{\text { distance from cable to base of tower }}{\text { length of cable }} \\
\cos x & =\frac{45}{100} \\
x & =\cos ^{-1}(0.45) \\
x & =63.2563 \ldots
\end{aligned}
$$

The angle that the cable makes with the ground is approximately 63°.

PTS: 1 DIF: 1-2
TOP: Solving Right Triangles
34. ANS:
$\sqrt{9604}=98$
PTS: 1
DIF: 1-2
TOP: Square Roots and Cube Roots
35. ANS:
a) $100 \mathrm{~km}^{2}$
b) $400 \mathrm{~mm}^{2}$

PTS: 1 DIF: 1-2
TOP: Square Roots and Cube Roots
36. ANS:
a) $6 \sqrt{7}$
b) $2 \sqrt[3]{5}$
c) $9 \sqrt{7}$

PTS: 1
DIF: 1-2
TOP: Irrational Numbers
37. ANS:
40.1
$252 \mathrm{ft} \frac{1 \text { rotation }}{2 \pi f t}=40.1$ rotations
PTS: 1
DIF: 3-4
TOP: Imperial Measurement

OBJ: Section 3.3 NAT: M4
KEY: cosine ratio | determine an angle measure
38. ANS:
3.7 h
$\frac{851 \mathrm{~km}}{143 \mathrm{mph}} \frac{1 \mathrm{mph}}{1.61 \mathrm{kmh}}=3.7 \mathrm{hrs}$

PTS: 1 DIF: 3-4 OBJ: Section 1.3 NAT: M1|M2
TOP: Converting Between SI and Imperial Systems
KEY: conversion | imperial | kilometre | mile | SI | speed
39. ANS:

138600 L
volume $=\pi\left(\frac{9.9 m}{2}\right)^{2} 1.8 m=138.6 \mathrm{~m}^{3}$
litres $=138.6 \mathrm{~m}^{3} \frac{1000 \mathrm{~L}}{1 \mathrm{~m}^{3}}=138600 \mathrm{~L}$

PTS: 1 DIF: 3-4
OBJ: Section $2.1 \mid$ Section 2.3
NAT: M1 | M3|AN3
TOP: Units of Area and Volume | Volume
KEY: calculate volume | problem solving | right cylinder | SI
40. ANS:
$295 \mathrm{~mm}^{2}$
slant $=\sqrt{(4.5 \mathrm{~mm})^{2}+(11 \mathrm{~mm})^{2}}=11.885 \mathrm{~mm}$
$S A=$ area $_{\text {base }}+4 *$ area $_{\text {triangle }}=9 \mathrm{~mm} * 9 \mathrm{~mm}+2 * 11.885 \mathrm{~mm} * 9 \mathrm{~mm}=295 \mathrm{~mm}^{2}$
PTS: 1 DIF: 3-4 OBJ: Section 2.2 NAT: M3
TOP: Surface Area
KEY: calculate surface area | right pyramid | SI | slant height | square root
41. ANS:

5 mm
$S A=946 \mathrm{~mm}^{2}=2(22 \mathrm{~mm} * 11 \mathrm{~mm}+22 * h+11 * h)$
$473 \mathrm{~mm}^{2}=22 \mathrm{~mm} * 11 \mathrm{~mm}+22 * h+11 * h$
$231 \mathrm{~mm}^{2}=(22 \mathrm{~mm}+11 \mathrm{~mm}) * h$
$h=7 \mathrm{~mm}$

PTS: 1
DIF: 3-4
OBJ: Section 2.2 NAT: M3
TOP: Surface Area
KEY: determine height from surface area, length, and width | right prism | SI
42. ANS:

73 in. ${ }^{3}$
$h e i g h t=1.2 \mathrm{ft} \frac{12 \mathrm{in}}{1 \mathrm{ft}}=14.4 \mathrm{in}$
area $_{\text {base }}=\pi(2.2 \mathrm{in})^{2}=15.21 \mathrm{in}^{2}$
volume $=\frac{15.21 \mathrm{in}^{2} * 14.4 \mathrm{in}}{3}=73 \mathrm{in}^{3}$
PTS: 1 DIF: 3-4 OBJ: Section 2.1| Section 2.3
NAT: M1 | M3|AN3 TOP: Units of Area and Volume | Volume
KEY: calculate volume | convert within the imperial system | right cone
43. ANS:
3.6 mm
area $_{\text {base }}=\pi(2.7 \mathrm{~mm})^{2}=22.9 \mathrm{~mm}^{2}$
volume $=27.5 \mathrm{~mm}^{3}=\frac{22.9 \mathrm{~mm}^{2} * h}{3}$
$h=\frac{3 * 27.5 \mathrm{~mm}^{3}}{22.9 \mathrm{~mm}^{2}}=3.6 \mathrm{~mm}$
PTS: 1 DIF: 3-4 OBJ: Section 2.3 NAT: M3|AN3
TOP: Volume KEY: determine height from volume and radius | right cone | SI
44. ANS:
0.2 m

PTS: 1 DIF: 3-4
TOP: Solving Right Triangles
OBJ: Section 3.3 NAT: M4
KEY: tangent ratio | determine a distance using trigonometry
45. ANS:
4.3 m

PTS: 1 DIF: 3-4
TOP: Solving Right Triangles
OBJ: Section 3.3 NAT: M4
KEY: tangent ratio | determine a distance using trigonometry
46. ANS:
82°
PTS: 1 DIF: 3-4
TOP: The Sine and Cosine Ratios
OBJ: Section 3.2 NAT: M4
KEY: cosine ratio | determine an angle measure
47. ANS:
40°
PTS: 1 DIF: 3-4
TOP: The Sine and Cosine Ratios

OBJ: Section 3.2 NAT: M4
KEY: cosine ratio | determine an angle measure
48. ANS:

8 cm
PTS: 1 DIF: 3-4 OBJ: Section 3.2 NAT: M4
TOP: The Sine and Cosine Ratios
KEY: cosine ratio | determine a distance using trigonometry | right triangle
49. ANS:
37°
PTS: 1 DIF: 3-4
TOP: The Sine and Cosine Ratios
50. ANS:
$6 n$
$\sqrt[3]{216 n^{3}}=6 n$
PTS: 1
DIF: 3-4
TOP: Square Roots and Cube Roots
51. ANS:
$\frac{16}{729}$
$\left(\frac{2}{9}\right)^{4}(9)$
$=\frac{16}{6561} * 9$
$=\frac{16}{729}$

PTS: 1 DIF: 3-4
TOP: Integral Exponents
52. ANS:
$225 g^{2}$
$(15 g)^{2}=15^{2} g^{2}=225 g^{2}$
PTS: 1 DIF: 3-4
TOP: Square Roots and Cube Roots
53. ANS:
$160^{\frac{5}{4}}$
PTS: 1 DIF: 3-4
TOP: Irrational Numbers
54. ANS:
$\sqrt{-25^{3}}$
PTS: 1
DIF: 3-4
TOP: Irrational Numbers

OBJ: Section 3.2 NAT: M4
KEY: cosine ratio | determine an angle measure

OBJ: Section 4.1 NAT: AN1
KEY: cube root
55. ANS:
a rational exponent
PTS: 1 DIF: 3-4
TOP: Rational Exponents
OBJ: Section 4.3 NAT: AN3
KEY: rational exponent
56. ANS:

3 days
$24=3 * 2^{x}$
$2^{x}=\frac{24}{3}=8$
$x=3$
PTS: 1 DIF: 3-4
TOP: Integral Exponents
OBJ: Section 4.2 NAT: AN3
KEY: apply powers \mid growth
57. ANS:
$7 \sqrt{11}$
PTS: 1 DIF: 3-4
TOP: Irrational Numbers
OBJ: Section 4.4 NAT: AN2 KEY: convert entire radical
58. ANS:
$2 j^{\frac{11}{2}}$
PTS: 1
DIF: 3-4
TOP: Irrational Numbers
OBJ: Section 4.4 NAT: AN2 KEY: convert radical to power
59. ANS:
$\sqrt[3]{84}, 2 \sqrt{30}, 4 \sqrt{8}, 3 \sqrt{18}$
PTS: 1
DIF: 3-4
OBJ: Section 4.4 NAT: AN2
TOP: Irrational Numbers
KEY: order irrational numbers
60. ANS:

$$
\begin{aligned}
\frac{s_{m}}{h_{m}} & =\frac{s_{j}}{h_{j}} \\
s_{m} & =\frac{h_{m} \times s_{j}}{h_{j}} \\
& =\frac{20 \times 12}{21} \\
& =11.43
\end{aligned}
$$

The shadow cast by Melvin's house is 11.4 m long.
PTS: 5
DIF: 3-4
TOP: SI Measurement

OBJ: Section 1.1 NAT: M1
KEY: proportional reasoning | metre
61. ANS:
a) The return trip takes 50 h .
$d=v \times t$
$=70 \times 50$
$=3500$
The return trip totals 3500 mi .
b) $d=3500 \mathrm{mi} \times \frac{1.61 \mathrm{~km}}{1 \mathrm{mi}}$
$=5635 \mathrm{~km}$
The total distance is 5635 km .
PTS: 1 DIF: 3-4 OBJ: Section 1.3 NAT: M1|M2
TOP: Converting Between SI and Imperial Systems
KEY: conversion | imperial to SI | miles to kilometres
62. ANS:
a) Determine the slant height.
$s^{2}=\left(\frac{24}{2}\right)^{2}+30^{2}$
$s^{2}=144+900$
$s=\sqrt{1044}$
$s=32.310 \ldots$
$S A=$ area of square base + lateral area
$S A=l w+4\left[\frac{1}{2}(l)\left(s^{\prime}\right)\right]$
$S A=(24)(24)+4[0.5(24)(32.310 \ldots)]$
$S A=576+1550.88 \ldots$
$S A=2126.88$...
The surface area of the right pyramid is approximately $2126.9 \mathrm{~cm}^{2}$.
b) $S A=B+$ lateral area
$S A=\pi r^{2}+\pi r s$
$S A=\pi(11)^{2}+\pi(11)(30)$
$S A=121 \pi+330 \pi$
$S A=451 \pi$
$S A=1416.858 \ldots$
The surface area of the right cone is approximately $1416.9 \mathrm{ft}^{2}$.
c) $S A=4 \pi r^{2}$
$S A=4 \pi(6.5)^{2}$
$S A=169 \pi$
$S A=530.929 \ldots$
The surface area of the sphere is approximately $530.9 \mathrm{~m}^{2}$.
PTS: 1 DIF: 3-4 OBJ: Section 2.2 NAT: M3|AN3
TOP: Surface Area
KEY: calculate surface area | imperial | right cone \mid right pyramid | SI | sphere
63. ANS:

Since the cube has edge length 20.5 cm , the diameter of the volleyball is also 20.5 cm .
The radius is 10.25 cm .
Use the formula for the volume of a sphere.
$V=\frac{4}{3} \pi r^{3}$
$V=\frac{4}{3} \pi(10.25)^{3}$
$V=4510.868$...
The volume of the volleyball is approximately $4511 \mathrm{~cm}^{3}$.
PTS: 1
DIF: 3-4
OBJ: Section 2.3 NAT: M3|AN3
TOP: Volume
KEY: calculate volume | right prism \mid SI \mid sphere
64. ANS:
a) $5.1^{2} \mathrm{~m}^{2}+3.5^{2} \mathrm{~m}^{2}=38.26 \mathrm{~m}^{2}$
b) $4.3^{2} \mathrm{yd}^{2}+9.3^{2} \mathrm{yd}^{2}=104.98 \mathrm{yd}^{2}$

PTS: 1 DIF: 3-4 OBJ: Section $4.1 \mid$ Section 4.2
NAT: AN1 | AN3 TOP: Square Roots and Cube Roots | Integral Exponents
KEY: area | perfect square | integral exponent
65. ANS:
a) $\left(\frac{3}{2}\right)^{6} \doteq 11.3906$
b) $\left(\frac{1}{4}\right)^{10} \doteq 9.5367 \times 10^{-7}$

PTS: 1 DIF: 3-4 OBJ: Section 4.2 NAT: AN3
TOP: Integral Exponents
KEY: exponent laws | quotient of powers | power of a power | negative exponent
66. ANS:

Find the side length, s, of the square faces of the box.
$s=\sqrt[3]{216}$
$=6$
Each face is 6 cm by 6 cm and has an area of $36 \mathrm{~cm}^{2}$.
(5) (36) $=180$

The surface area of the five faces of the box is $45 \mathrm{~cm}^{2}$.
PTS: 1
DIF: 3-4
OBJ: Section 4.1 NAT: AN1
TOP: Square Roots and Cube Roots KEY: area | volume | cube root
67. ANS:
4^{5}
PTS: 1
DIF: 3-4
OBJ: Section 4.2 NAT: AN3
TOP: Integral Exponents
KEY: integral exponent | power
68. ANS:

1 min 44 s
$\frac{114 y d}{1 m / s} \frac{1 \mathrm{~m}}{1.0936 y d}=104 \mathrm{sec}$
$\min =$ floor $\left(104 s \frac{1 \min }{60 s}\right)=1$
$\sec =104 s-1 \min \frac{60 s}{1 \min }=44 s$
PTS: 1
DIF: 5-6
OBJ: Section 1.3 NAT: M1 | M2
TOP: Converting Between SI and Imperial Systems
KEY: conversion | imperial | metre | SI | speed | yard
69. ANS:
$94 \mathrm{~cm}^{3}$
area $a_{\text {base }}=\pi(2.3 \mathrm{~cm})^{2}=16.6 \mathrm{~cm}^{2}$
volume $_{\text {cone }}=\frac{16.6 \mathrm{~cm}^{2} * 12.3 \mathrm{~cm}}{3}=68.1 \mathrm{~cm}^{3}$
volume $_{\text {scoop }}=\frac{4 \pi(2.3 \mathrm{~cm})^{3}}{3 * 2}=25.5 \mathrm{~cm}^{3}$
volume $=68.1 \mathrm{~cm}^{3}+25.5 \mathrm{~cm}^{3}=94 \mathrm{~cm}^{3}$
PTS: 1 DIF: 5-6 OBJ: Section 2.3 NAT: M3|AN3
TOP: Volume KEY: calculate volume | problem solving | right cone | SI | sphere
70. ANS:
$1207 \mathrm{~cm}^{3}$
area $_{\text {base }}=(8 \mathrm{~cm})^{2}=64 \mathrm{~cm}^{2}$
volume $_{\text {bottom }}=64 \mathrm{~cm}^{2} * 22 \mathrm{~cm}=1408 \mathrm{~cm}^{3}$
volume $_{\text {top }}=\frac{64 \mathrm{~cm}^{2} * 5 \mathrm{~cm}}{2}=160 \mathrm{~cm}^{3}$
volume $=1408 \mathrm{~cm}^{3}+160 \mathrm{~cm}^{3}=1568 \mathrm{~cm}^{3}$
juice $=\frac{1568 \mathrm{~cm}^{3} * 77 \%}{100 \%}=1207 \mathrm{~cm}^{3}$
PTS: 1 DIF: 5-6 OBJ: Section 2.3 NAT: M3
TOP: Volume KEY: problem solving | right prism | SI | volume
71. ANS:
$\sin \mathrm{A}=\frac{\text { length of side opposite } \angle \mathrm{A}}{\text { length of hypotenuse }}$

PTS: 1 DIF: 5-6
TOP: The Sine and Cosine Ratios

OBJ: Section 3.2 NAT: M4
KEY: sine ratio | define the sine ratio
72. ANS:
$x=7.2 \mathrm{~m}$ and $y=10.8 \mathrm{~m}$
PTS: 1 DIF: 5-6 OBJ: Section 3.2 NAT: M4
TOP: The Sine and Cosine Ratios
KEY: sine ratio | determine a distance using trigonometry | right triangle
73. ANS:
$63 \mathrm{~cm}^{2}$
PTS: 1 DIF: 5-6
OBJ: Section 3.3 NAT: M4
TOP: Solving Right Triangles
KEY: tangent ratio | right triangle | area
74. ANS:

Area of front and back faces:
$A=2 \times 19 \times 14$
$=532$
The area of the front and back faces of the box totals $532 \mathrm{~cm}^{2}$.
Area of two long edges:
$A=2 \times 19 \times 1.5$
$=57$
The area of the two long edges of the box totals $57 \mathrm{~cm}^{2}$.
Area of two short edges:
$A=2 \times 14 \times 1.5$
$=42$
The area of the two short edges of the box totals $42 \mathrm{~cm}^{2}$.
Area needed for overlapping $=66 \mathrm{~cm}^{2}$
Total area of wrapping:
$A=532+57+42+66$

$$
=697
$$

The total amount of plastic wrapping needed is $697 \mathrm{~cm}^{2}$.
PTS: 2
DIF: 5-6
OBJ: Section 1.1 NAT: M1

TOP: SI Measurement
KEY: surface area \mid centimetre \mid SI
75. ANS:

Surface area of the four long sides:
$A=4 \times 3 \times 8$
$=96$
The combined surface area of the four long sides is $96 \mathrm{~cm}^{2}$.
Surface area of the two ends if they were whole:

$$
\begin{aligned}
A & =2 \times 3 \times 3 \\
& =18
\end{aligned}
$$

The combined surface area of the two ends, if they were whole, would be $18 \mathrm{~cm}^{2}$.
Surface area lost for the hole in each end:

$$
\begin{aligned}
A & =2 \times 1 \times 2 \\
& =4
\end{aligned}
$$

The surface area lost for the hole in each end is $4 \mathrm{~cm}^{2}$.
Surface area inside the hole:

$$
\begin{aligned}
A & =(2 \times 1 \times 8)+(2 \times 2 \times 8) \\
& =48
\end{aligned}
$$

The surface area inside the hole is $48 \mathrm{~cm}^{2}$.
Total surface area:
$A=96+18-4+48$
$=158$
The total surface area of the figure is $158 \mathrm{~cm}^{2}$.
PTS: 4 DIF: 5-6 OBJ: Section 1.1 NAT: M1
TOP: SI Measurement
KEY: surface area | centimetre | SI
76. ANS:

$$
\begin{aligned}
& \tan 24^{\circ}=\frac{\mathrm{AD}}{\mathrm{BD}} \\
& \tan 24^{\circ}=\frac{3.5}{\mathrm{BD}} \\
& \mathrm{BD}=\frac{3.5}{\tan 24^{\circ}} \\
& \mathrm{BD}=7.8611 \ldots \\
& \mathrm{BC}=2(\mathrm{BD}) \\
& \mathrm{BC}=2(7.8611) \\
& \mathrm{BC}=15.7222 \ldots \\
& \mathrm{BC} \approx 15.7 \mathrm{~m}
\end{aligned}
$$

The roof is approximately 15.7 m wide.
PTS: 1 DIF: 5-6 OBJ: Section 3.1 NAT: M4
TOP: The Tangent Ratio
KEY: tangent ratio | determine a distance using trigonometry | isosceles triangle
77. ANS:

$$
\begin{aligned}
& \cos Z=\frac{\text { side adjacent to } \angle Z}{\text { hypotenuse }} \\
& \cos Z=\frac{\mathrm{ZW}}{\mathrm{XZ}} \\
& \cos Z=\frac{13}{16} \\
& \cos Z= 0.8125 \\
& Z=\cos ^{-1}(0.8125) \\
& Z=36 \\
& \sin Z=\frac{X W}{X Z} \\
& \sin 36^{\circ}=\frac{X W}{16} \\
& 16\left(\sin 36^{\circ}\right)=X W \\
& 9.3=X W
\end{aligned}
$$

XW measures approximately 9.3 cm .

PTS: 1 DIF: 5-6
TOP: The Sine and Cosine Ratios

OBJ: Section 3.2 NAT: M4
KEY: determine an angle measure | isosceles triangle
78. ANS:

Let h represent the height of the pole, in metres.

$$
\begin{aligned}
\tan 80^{\circ} & =\frac{\text { height of pole }}{\text { distance from base of pole to cable }} \\
\tan 80^{\circ} & =\frac{h}{7} \\
7\left(\tan 80^{\circ}\right) & =h \\
39.6990 \ldots & =h
\end{aligned}
$$

Let x represent the angle, in degrees, between the second cable and the ground.

$$
\begin{aligned}
\tan x & =\frac{\text { distance from base of pole to cable }}{\text { tan } x}
\end{aligned}=\frac{39.7}{3(7)}, ~\left(\frac{39.7}{21}\right) .
$$

The second cable makes an angle of approximately 62° with the ground.
PTS: 1
DIF: 5-6
OBJ: Section 3.3 NAT: M4
TOP: Solving Right Triangles
KEY: tangent ratio | solve a right triangle
79. ANS:

The volume is $3072 \mathrm{~mm}^{3}$.
$3072=(4 x)^{3}-(2 x)(2 x)(4 x)$
$3072=64 x^{3}-16 x^{3}$
$3072=48 x^{3}$

$$
\begin{aligned}
64 & =x^{3} \\
x & =4
\end{aligned}
$$

The dimensions of the cube are 16 mm by 16 mm by 16 mm .
The dimensions of the hole are 8 mm by 8 mm by 16 mm .

PTS: 1 DIF: 5-6
TOP: Square Roots and Cube Roots
80. ANS:

Example:

- product of powers: $\left(p^{4}\right)\left(p^{2}\right)=p^{6}$
- quotient of powers: $\frac{p^{18}}{p^{12}}=p^{6}$
- power of a power: $\left(p^{2}\right)^{3}=p^{6}$

PTS: 1 DIF: 5-6
TOP: Integral Exponents

OBJ: Section 4.1 NAT: AN1
KEY: volume | cube root
81. ANS:
$P=400(1.1)^{m-1}$, where P represents Matthew's pay, in dollars, and m is the pay number.
$P=400(1.1)^{m-1}$
$=400(1.1)^{5}$
$=400(1.61051)$

$$
\doteq 644.20
$$

Matthew's pay in month 6 would be $\$ 644.20$.
PTS: 1 DIF: 5-6 OBJ: Section 4.3 NAT: AN3
TOP: Rational Exponents KEY: apply powers
82. ANS:
$121.2 \mathrm{~cm}^{2}$
height $_{\text {base }}=\sqrt{(6 \mathrm{~cm})^{2}+\left(\frac{6 \mathrm{~cm}}{2}\right)^{2}}=5.2 \mathrm{~cm}$
area $_{\text {base }}=\frac{1}{2} 5.2 \mathrm{~cm}^{*} 6 \mathrm{~cm}=31.2 \mathrm{~cm}^{2}$
area $_{\text {lateral }}=3 * 5 \mathrm{~cm} * 6 \mathrm{~cm}=90 \mathrm{~cm}^{2}$
$S A=121.2 \mathrm{~cm}^{2}$
PTS: 1 DIF: 7-8 OBJ: Section 2.2 NAT: M3|AN3
TOP: Surface Area
KEY: calculate surface area | problem solving | right prism | SI
83. ANS:
$585.4 \mathrm{~cm}^{2}$
slant $_{1}=\sqrt{\left(\frac{12 \mathrm{~cm}}{2}\right)^{2}+(16 \mathrm{~cm})^{2}}=17.09 \mathrm{~cm}$
slant $_{2}=\sqrt{\left(\frac{13 \mathrm{~cm}}{2}\right)^{2}+(16 \mathrm{~cm})^{2}}=17.27 \mathrm{~cm}$
area $=12 \mathrm{~cm} * 13 \mathrm{~cm}+12 \mathrm{~cm} * 17.27 \mathrm{~cm}+13 \mathrm{~cm} * 17.09 \mathrm{~cm}=585.4 \mathrm{~cm}^{2}$
PTS: 1 DIF: 7-8 OBJ: Section 2.2 NAT: M3|AN3
TOP: Surface Area
KEY: calculate surface area | right pyramid | SI | slant height | square root
84. ANS:

6 h
$M=M_{0}\left(\frac{1}{8}\right)^{\frac{t}{18}}=M_{0}\left[\left(\frac{1}{2}\right)^{3}\right]^{\frac{t}{18}}=M_{0}\left(\frac{1}{2}\right)^{\frac{3 t}{18}}=M_{0}\left(\frac{1}{2}\right)^{\frac{t}{6}}$
PTS: 1
DIF: 7-8
OBJ: Section 4.3 NAT: AN3
TOP: Rational Exponents
KEY: apply powers | decay
85. ANS:

Surface area of a right cylinder $=2 \pi r^{2}+2 \pi r h$
Area of each cut-out circle $=\pi r^{2}$
Surface area to be painted = surface area of cylinder - area of three circles
$S A=2 \pi r^{2}+2 \pi r h-3\left(\pi r^{2}\right)$
$S A=2 \pi r^{2}+2 \pi r h-3 \pi r^{2}$
$S A=2 \pi r h-\pi r^{2}$
PTS: 1 DIF: 7-8
TOP: Surface Area
OBJ: Section 2.2 NAT: M3
KEY: lateral area \mid right cylinder \mid surface area \mid write equation
86. ANS:

Volume of original cone $=\frac{1}{3} \pi r^{2} h$
a) Double the radius:
$V=\frac{1}{3} \pi(2 r)^{2} h$
$V=\frac{1}{3} \pi\left(4 r^{2}\right) h$
$V=\frac{4}{3} \pi r^{2} h$
$V=4\left(\frac{1}{3} \pi r^{2} h\right)$
When the radius is doubled, the volume of the new cone is 4 times the volume of the original cone.
b) Double the radius and the height:
$V=\frac{1}{3} \pi(2 r)^{2}(2 h)$
$V=\frac{1}{3} \pi\left(4 r^{2}\right) 2 h$
$V=\frac{8}{3} \pi^{2} h$
$V=8\left(\frac{1}{3} \pi r^{2} h\right)$
When both the radius and the height are doubled, the volume of the new cone is 8 times the volume of the original cone.
c) Double the radius and halve the height:
$V=\frac{1}{3} \pi(2 r)^{2}\left(\frac{1}{2} h\right)$
$V=\frac{1}{3} \pi\left(2 r^{2} h\right)$
$V=\frac{2}{3} \pi r^{2} h$
$V=2\left(\frac{1}{3} \pi r^{2} h\right)$
When the radius is doubled and the height is halved, the volume of the new cone is twice the volume of the original cone.

PTS: 1 DIF: 7-8 OBJ: Section 2.3 NAT: M3|AN3
TOP: Volume
KEY: problem solving | right cone \mid volume
87. ANS:

If the radius of Mercury is r kilometres, the radius of Neptune is $10 r$ kilometres.
a) Use the formula for the surface area of a sphere to set up a ratio.

$$
\begin{aligned}
\frac{4 \pi(10 r)^{2}}{4 \pi r^{2}} & =\frac{4 \pi\left(100 r^{2}\right)}{4 \pi r^{2}} \\
& =\frac{100}{1}
\end{aligned}
$$

The ratio of the surface area of Neptune to the surface area of Mercury is $100: 1$.
b) Use the formula for the volume of a sphere to set up a ratio.

$$
\begin{aligned}
\frac{\frac{4}{3} \pi(10 r)^{3}}{\frac{4}{3} \pi r^{3}} & =\frac{\frac{4}{3} \pi\left(1000 r^{3}\right)}{\frac{4}{3} \pi r^{3}} \\
& =\frac{1000}{1}
\end{aligned}
$$

The ratio of the volume of Neptune to the volume of Mercury is 1000:1.
PTS: 1 DIF: 7-8 OBJ: Section $2.2 \mid$ Section 2.3
NAT: M3 | AN3 TOP: Surface Area | Volume
KEY: problem solving | SI | sphere | surface area | volume
88. ANS:
a) $\quad 1 \mathrm{~km}=1000 \mathrm{~m}$

$$
\begin{aligned}
& \text { percent grade }=\left(\frac{\text { vertical rise }}{\text { horizontal distance }}\right) \times 100 \\
& \text { percent grade }=\left(\frac{80}{1000}\right) \times 100 \\
& \text { percent grade }=8
\end{aligned}
$$

The percent grade of the road is 8%.
b) Let θ represent the angle of elevation, in degrees.
$\tan \theta=\frac{\text { vertical rise }}{\text { horizontal distance }}$
$\tan \theta=\frac{80}{1000}$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{80}{1000}\right) \\
& \theta=5
\end{aligned}
$$

The angle of elevation of the road is approximately 5°.

PTS: 1 DIF: 7-8
TOP: Solving Right Triangles

OBJ: Section 3.3 NAT: M4
KEY: tangent ratio | angle of elevation
89. ANS:

When the conveyor is at its lowest elevation, in $\triangle \mathrm{ABC}, \mathrm{AC}=9 \mathrm{~m}$ and $\angle \mathrm{A}=5^{\circ}$.

$$
\begin{array}{r}
\sin 5^{\circ}=\frac{\mathrm{BC}}{9} \\
9\left(\sin 5^{\circ}\right)=\mathrm{BC} \\
0.7844 \ldots=\mathrm{BC}
\end{array}
$$

The lowest point of the opening is approximately 0.8 m above the ground.
When the conveyor is at its highest angle of elevation, in $\triangle \mathrm{DEB}, \mathrm{DE}=9 \mathrm{~m}$ and $\angle \mathrm{D}=20^{\circ}$.
$\sin 20^{\circ}=\frac{\mathrm{BE}}{9}$
$9\left(\sin 20^{\circ}\right)=\mathrm{BE}$
3.0782... $=\mathrm{BE}$

The highest point of the opening is approximately 3.1 m above the ground.
Size of opening $=$ highest point - lowest point
Size of opening $=3.1-0.8$
Size of opening $=2.3 \mathrm{~m}$
The size of the opening is approximately 2.3 m .
PTS: 1 DIF: 7-8 OBJ: Section 3.3 NAT: M4
TOP: Solving Right Triangles
KEY: sine ratio | angle of elevation | determine a distance using trigonometry \mid determine a distance using an angle of elevation
90. ANS:
a) Let x represent the distance between Abdul and Yuri, in metres.

$$
\cos 47^{\circ}=\frac{\text { distance between Abdul and Yuri }}{\text { length of kite string }}
$$

$\cos 47^{\circ}=\frac{x}{30}$
$30\left(\cos 47^{\circ}\right)=x$

$$
20.5=x
$$

Abdul and Yuri are approximately 20.5 m apart.
b) Let h represent the height of the kite above the ground, in metres.
$\sin 47^{\circ}=\frac{\text { height of the kite above the ground }}{\text { length of kite string }}$
$\sin 47^{\circ}=\frac{h}{30}$
$30\left(\sin 47^{\circ}\right)=h$
$21.94=h$
Let x represent the horizontal distance between Abdul and the kite, in metres.
$\tan 22^{\circ}=\frac{\text { height of the kite above the ground }}{\text { horizontal distance between Abdul and the kite }}$

$$
\begin{aligned}
\tan 22^{\circ} & =\frac{21.94}{x} \\
x & =\frac{21.94}{\tan 22^{\circ}} \\
x & =54.3
\end{aligned}
$$

Distance between Abdul and Yuri $=20.5+54.3$

$$
=74.8
$$

The distance between Abdul and Yuri is now approximately 74.8 m .
PTS: 1
DIF: 7-8
OBJ: Section 3.2 NAT: M4
TOP: The Sine and Cosine Ratios
KEY: cosine ratio | determine a distance using trigonometry | angle of elevation | solve a right triangle

