1. Here is the graph of \(y = f(x) \). What is the graph of its image after a translation of 2 units right?
2. For the graph of $y = f(x)$ shown below, what graph represents $y = f(-4x)$?

A.

B.

C.

D.
3. Here is the graph of $y = f(x)$. What is the graph of its inverse.

A.

B.

C.

D.
4. The graph of \(y = f(x) \) is translated 3 units down. What is the equation of the translation image in terms of the function \(f \)?

A. \(y = f(x + 3) \)
B. \(y - 3 = f(x) \)
C. \(y + 3 = f(x) \)
D. \(y = f(x - 3) \)

5. What description describes how the graph of \(y = f(x) \) has been transformed to get the graph of \(y = f(-2(x-2)) \)?

It is the image of the graph of \(y = f(x) \) after:

A. a vertical stretch by a factor of 2, a reflection in both axes, and a translation of 2 units right.
B. a horizontal compression by a factor of \(\frac{1}{2} \), a reflection in the y-axis, and a translation of 2 units right.
C. a vertical compression by a factor of \(\frac{1}{2} \), a reflection in the y-axis, and a translation of 2 units down.
D. a horizontal stretch by a factor of 2, a reflection in the y-axis, and a translation of 2 units right.

6. What description describes how the graph of \(y = f(x) \) has been transformed to get the graph of \(y - 5 = \frac{1}{2}f(x) \)?

It is the image of the graph of \(y = f(x) \) after:

A. a horizontal compression by a factor of \(\frac{1}{2} \), a reflection in the x-axis, and a translation of 5 units right.
B. a vertical compression by a factor of \(\frac{1}{2} \), a reflection in the x-axis, and a translation of 5 units down.
C. a vertical compression by a factor of \(\frac{1}{2} \), no reflection, and a translation of 5 units up.
D. a horizontal compression by a factor of \(\frac{1}{2} \), no reflection, and a translation of 5 units up.
7. The graph of \(y - 4 = \frac{1}{2} f(3(x + 5)) \) is the image of the graph of \(y = f(x) \) after a combination of transformations. Which statement below is true?

A. The graph of \(y = f(x) \) was compressed horizontally by a factor of \(\frac{1}{3} \).
B. The graph of \(y = f(x) \) was compressed horizontally by a factor of \(\frac{1}{2} \).
C. The graph of \(y = f(x) \) was reflected in the \(y \)-axis.
D. The graph of \(y = f(x) \) was translated 5 units up.

Moderate (Show work for non-MC)

8. The function \(y = f(x) \) has domain \(-3 \leq x \leq 3\) and range \(2 \leq y \leq 6\). What are the domain and range of \(y + 3 = f(x - 2) \)?

A. domain: \(-6 \leq x \leq 0\)
range: \(1 \leq y \leq 3\)
B. domain: \(-6 \leq x \leq 0\)
range: \(-1 \leq y \leq 3\)
C. domain: \(-1 \leq x \leq 5\)
range: \(-1 \leq y \leq 3\)
D. domain: \(-1 \leq x \leq 5\)
range: \(1 \leq y \leq 3\)

9. The function \(y = f(x) \) undergoes two translations; 2 units right, and then 3 units down. What is the new equation for the translated function?

A. \(y + 3 = f(x + 2) \)
B. \(y + 3 = f(x - 2) \)
C. \(y - 3 = f(x + 2) \)
D. \(y - 3 = f(x - 2) \)

10. The graph of \(y = f(x) \) is compressed horizontally by a factor of \(\frac{1}{10} \), and reflected in the \(y \)-axis. What is the equation of the image graph in terms of the function \(f \)?

A. \(y = -10f(x) \)
B. \(y = f\left(\frac{1}{10}x\right) \)
C. \(y = \frac{1}{10}f(x) \)
D. \(y = f(-10x) \)
11. Here is the graph of \(y = f(x) \). What are the domain and range of its image after a reflection in the \(x \)-axis?

A. domain: \(-8 \leq x \leq -2\)
 range: \(2 \leq y \leq 10\)

B. domain: \(2 \leq x \leq 8\)
 range: \(-10 \leq y \leq -2\)

C. domain: \(-8 \leq x \leq -2\)
 range: \(-10 \leq y \leq -2\)

D. domain: \(2 \leq x \leq 8\)
 range: \(2 \leq y \leq 10\)

12. The graph of \(y = \left| (x + 7)^2 - 5 \right| \) was reflected in the \(x \)-axis and its image is shown. What is an equation of the image?

A. \(y = -\left| (x + 7)^2 - 5 \right| \)

B. \(y = \left| (-x + 7)^2 - 5 \right| \)

C. \(y = \left| (x - 7)^2 + 5 \right| \)

D. \(y = \left| (-x - 7)^2 + 5 \right| \)
13. Here is the graph of \(y = f(x) \). What are the domain and range of \(y = -f(x) \)?

A. domain: \(x \leq -4 \)
 range: \(y \geq 4 \)
B. domain: \(x \in \mathbb{R} \)
 range: \(y \leq -4 \)
C. domain: \(x \in \mathbb{R} \)
 range: \(y \in \mathbb{R} \)
D. domain: \(x \in \mathbb{R} \)
 range: \(y \leq 4 \)

14. The point A (16, 64) lies on the graph of \(y = \sqrt[3]{x^3} \). What are the coordinates of its image \(A' \) on the graph of \(y = \frac{1}{4} \sqrt[3]{(-2x)^3} \)?

A. (4, 16)
B. (−8, −32)
C. (−8, 16)
D. Not enough information is given.

15. The function \(f(x) = x^2 + 5x + 6 \) has zeros at −2 and −3. What are the zeros of the function \(y = 4f\left(\frac{1}{7} x\right) \)?

A. \(\frac{2}{7}, \frac{3}{7} \)
B. 14 and 21
C. −14 and −21
D. 8 and 12

16. Determine an equation of the inverse of the function \(y = (x + 7)^2 - 5 \).

A. \(y = -(x - 5)^2 - 7 \)
B. \(y = \pm \sqrt{x - 5} + 7 \)
C. \(y = (x + 5)^2 - 7 \)
D. \(y = \pm \sqrt{x + 5} - 7 \)
17. The graph of \(y = f(x) \) is horizontally compressed by a factor of \(\frac{1}{3} \), vertically stretched by a factor of 2, reflected in the y-axis, and translated 2 units down and 2 units left. What is an equation of the image graph in terms of the function \(f \)?

A. \(y + 2 = 3f(-2(x - 2)) \)
B. \(y - 2 = 2f(-3(x - 2)) \)
C. \(y - 2 = 3f(-2(x + 2)) \)
D. \(y + 2 = 2f(-3(x + 2)) \)

18. The graph of \(y = g(x) \) is the image of the graph of \(y = f(x) \) after a combination of transformations. What description describes the transformations? Use algebra if non-MC.

A. vertical stretch by a factor of 2, a reflection in the x-axis, and a translation of 3 units right
B. horizontal stretch by a factor of 2, a reflection in the x-axis, and a translation of 3 units up
C. vertical compression by a factor of \(\frac{1}{2} \), a reflection in the x-axis, and a translation of 3 units right
D. horizontal compression by a factor of \(\frac{1}{2} \), a reflection in the x-axis, and a translation of 3 units down
19. What description describes how the graph of \(y + 3 = \left(\frac{4}{-3(x + 2)} \right)^3 \) is related to the graph of \(y = \frac{1}{x^3} \)?

A. The graph of \(y = \frac{1}{x^3} \) is horizontally compressed by a factor of \(\frac{1}{3} \), vertically compressed by a factor of \(\frac{1}{4} \), reflected in both axes, then translated 2 units left and 3 units down.

B. The graph of \(y = \frac{1}{x^3} \) is horizontally stretched by a factor of 3, vertically compressed by a factor of \(\frac{1}{4} \), reflected in the y-axis, then translated 2 units right and 3 units up.

C. The graph of \(y = \frac{1}{x^3} \) is horizontally compressed by a factor of \(\frac{1}{3} \), vertically stretched by a factor of 4, reflected in both axes, then translated 2 units right and 3 units up.

D. The graph of \(y = \frac{1}{x^3} \) is horizontally compressed by a factor of \(\frac{1}{3} \), vertically stretched by a factor of 4, reflected in the y-axis, then translated 2 units left and 3 units down.

20. What description describes how the graph of \(y - 3 = \frac{2}{3} [-2(x + 2)]^3 \) is related to the graph of \(y = x^3 \)?

A. The graph of \(y = x^3 \) is horizontally stretched by a factor of 2, vertically compressed by a factor of \(\frac{2}{3} \), reflected in the y-axis, then translated 2 units right and 3 units down.

B. The graph of \(y = x^3 \) is vertically stretched by a factor of 2, horizontally stretched by a factor of \(\frac{3}{2} \), reflected in the y-axis, then translated 2 units left and 3 units up.

C. The graph of \(y = x^3 \) is vertically compressed by a factor of \(\frac{1}{2} \), horizontally compressed by a factor of \(\frac{2}{3} \), reflected in the y-axis, then translated 2 units right and 3 units down.

D. The graph of \(y = x^3 \) is horizontally compressed by a factor of \(\frac{1}{2} \), vertically compressed by a factor of \(\frac{2}{3} \), reflected in the y-axis, then translated 2 units left and 3 units up.
Difficult (Show work for non-MC)

___ 21. The graph of \(y - 2 = \sqrt{x - 2} \) is translated 5 units right and 5 units down. What is an equation of the image graph?

A. \(y + 5 = \sqrt{x - 5} \)
B. \(y + 3 = \sqrt{x - 7} \)
C. \(y + 7 = \sqrt{x - 3} \)
D. \(y - 7 = \sqrt{x + 3} \)

___ 22. The graph of \(y = g(x) \) is a transformation image of the graph of \(y = |x - 2| + 3 \). What is an equation of the image graph in terms of \(x \)?

![Graph of \(y = |x - 2| + 3 \) and \(y = g(x) \)]

A. \(y = -|2x - 2| + 3 \)
B. \(y = (|2x - 2| + 3) \)
C. \(y = 2(|-x - 2| + 3) \)
D. \(y = -2(|x - 2| + 3) \)

___ 23. A transformation image of the graph of \(y = f(x) \) is represented by the equation \(y - 2 = -4f\left(3(x - 2)\right) \). The point (5,10) lies on the image graph. What are the coordinates of the corresponding point on the graph of \(y = f(x) \)?

A. (10,5)
B. (3,8)
C. (9, -2)
D. (2,2)
Short Answer

Easy

24. The graph of \(y = g(x) \) is the image of the graph of \(y = f(x) \) after a single translation. What is the equation of the translation image in terms of the function \(f \)?

25. The graph of \(y = f(x) \) is translated 4 units left. What is an equation of the translation image in terms of the function \(f \)?

26. The graph of \(y = g(x) \) is translated 2 units left and 5 units up. What is an equation of the translation image in terms of the function \(g \)?

27. What is an equation for the image of \(y = |x^3 - 4| \) after a reflection of its graph in the \(y \)-axis?

28. The graph of \(y = f(x) \) is stretched vertically by a factor of 5. What is the equation of the image graph in terms of the function \(f \)?

Moderate (Show work for non-MC)

29. Determine the coordinates of the point where the graph of \(f(x) = \frac{5}{x^2 + 10x + 25} \) intersects the graph of \(y = f(-x) \).
30. The graph of \(y = f(x) \) is the image of the graph of \(y = -x^3 \) after a horizontal and vertical translation. What is an equation of the image graph?

\[y = -x^3 \]

31. The graph of \(y = g(x) \) is a transformation image of the graph of \(y = f(x) \). Corresponding points are labelled. Write the equation of the image graph in terms of the function \(f \). Solve with algebra.

32. The graph of \(y = |x| \) is vertically stretched by a factor of 2, horizontally stretched by a factor of 2, reflected in the y-axis, then translated 4 units right and 3 units up. Write an equation of the image graph in terms of \(x \).
33. The graph of $y = g(x)$ is the image of the graph of $y = f(x)$ after a stretch or compression, and a pair of translations. Corresponding points are indicated. Describe the transformations. Use algebra to solve.

34. The graph of $y = \sqrt{x}$ is vertically compressed by a factor of $\frac{1}{3}$, horizontally compressed by a factor of $\frac{1}{4}$, reflected in the y-axis, then translated 2 units left and 2 units up. Write an equation of the image graph in terms of x.

35. A graph was reflected in the line $y = x$. Its reflection image is shown. Determine an equation of the original function in terms of x and y.
Difficult (Show work for non-MC)

36. A function \(f(x) \) is an even function when \(f(x) = f(-x) \). A function \(f(x) \) is an odd function when \(f(-x) = -f(x) \). Is \(y = \frac{1}{x} \) an even function or an odd function?

37. A transformation image of the graph of \(y = f(x) \) is represented by the equation \(y + 3 = \frac{1}{2}(2x - 2) \). The point \((-1, -\frac{3}{2})\) lies on the image graph. What are the coordinates of the corresponding point on the graph of \(y = f(x) \)?

Problem

Moderate (Show work for non-MC)

38. Here is the graph of \(y = f(x) \). On the same grid, sketch the graph of \(y - 2 = f(x + 2) \). Describe how the graph of \(y = f(x) \) was translated. State the domain and range of each function.
39. Here is the graph of \(y = f(x) \). On the same grid, sketch the graph of \(y = \frac{1}{2} f(2x) \). State the domain and range of each function.

40. Describe how the graph of \(y - 4 = \frac{1}{2} f(2(x - 3)) \) is related to the graph of \(y = f(x) \).
41. The graph of \(y = g(x) \) is the image of the graph of \(y = f(x) \) after a combination of transformations. Corresponding points are labelled. What is an equation of the image graph in terms of the function \(f \)? Use algebra to solve.

42. The graph of \(y = -5x^2 - 10x - 16 \) is translated vertically so that its vertex lies on the \(x \)-axis. Determine the translation.

43. The graphs of \(y = dx + 3 \) and its inverse coincide. Determine the value of \(d \).