1. Here are the graphs of $y = f(x)$ and $y = g(x)$. What graph below is the graph of $y = f(x) \cdot g(x)$?
2. Given \(f(x) = 4x - 3 \) and \(g(x) = 2x - 4 \), what is an explicit equation for \(h(x) = f(x) + g(x) \)? For non-MC, expand and simplify.
 \[
 \begin{array}{ll}
 \text{A. } & h(x) = -6x - 7 \\
 \text{B. } & h(x) = 6x + 7 \\
 \text{C. } & h(x) = 6x - 7 \\
 \text{D. } & h(x) = -6x + 7 \\
 \end{array}
 \]

3. Given \(f(x) = 3x - 2 \) and \(g(x) = x^2 - 4x - 3 \), what is an explicit equation for \(d(x) = g(x) - f(x) \)? For non-MC, expand and simplify.
 \[
 \begin{array}{ll}
 \text{A. } & d(x) = -x^2 + 7x - 5 \\
 \text{B. } & d(x) = x^2 - x - 5 \\
 \text{C. } & d(x) = -x^2 - 7x - 1 \\
 \text{D. } & d(x) = x^2 - 7x - 1 \\
 \end{array}
 \]

4. Given \(f(x) = 3x - 2 \) and \(g(x) = 2x^2 - 4 \), what is an explicit equation for \(p(x) = f(x) \cdot g(x) \)? For non-MC, expand and simplify.
 \[
 \begin{array}{ll}
 \text{A. } & p(x) = 6x^2 - 16x + 8 \\
 \text{B. } & p(x) = 2x^2 + 3x - 6 \\
 \text{C. } & p(x) = 5x^3 + 4x^2 - 12x + 8 \\
 \text{D. } & p(x) = 6x^3 - 4x^2 - 12x + 8 \\
 \end{array}
 \]

5. Given \(f(x) = x + 4 \) and \(g(x) = x^2 - 49 \), what is the domain of \(q(x) = \frac{f(x)}{g(x)} \)?
 \[
 \begin{array}{ll}
 \text{A. } & x \neq 7, x \neq -7 \\
 \text{B. } & x \in \mathbb{R} \\
 \text{C. } & x \neq 49 \\
 \text{D. } & x \neq -4 \\
 \end{array}
 \]

6. Given \(f(x) = \sqrt{3 - x} \) and \(g(x) = 6 - 4x \), what is an explicit equation for \(f(g(x)) \)? For non-MC, expand and simplify.
 \[
 \begin{array}{ll}
 \text{A. } & f(g(x)) = 6 - \sqrt{3 - 4x} \\
 \text{B. } & f(g(x)) = \sqrt{-3 - 4x} \\
 \text{C. } & f(g(x)) = -3 - \sqrt{3 - 4x} \\
 \text{D. } & f(g(x)) = \sqrt{4x - 3} \\
 \end{array}
 \]

7. Given \(h(x) = 2x^2 + 6x - 5 \), which pair of equations below are possible equations for \(f(x) \) and \(g(x) \) so that \(h(x) = f(x) - g(x) \)? Avoid trivial if non-MC.
 \[
 \begin{array}{ll}
 \text{A. } & f(x) = x^2 \\
 & g(x) = x^2 + 6x - 5 \\
 \text{B. } & f(x) = 2x^2 \\
 & g(x) = -6x + 5 \\
 \text{C. } & f(x) = 2x^2 \\
 & g(x) = 6x - 5 \\
 \text{D. } & f(x) = x^2 \\
 & g(x) = -x^2 - 6x - 5 \\
 \end{array}
 \]
8. Given \(h(x) = x^2 + x - 42 \), which pair of equations below are possible equations for \(f(x) \) and \(g(x) \) so that \(h(x) = f(x) \cdot g(x) \)? Avoid trivial if non-MC.

A. \(f(x) = x - 6 \)
 \(g(x) = x - 7 \)
B. \(f(x) = x + 6 \)
 \(g(x) = x - 7 \)
C. \(f(x) = x - 6 \)
 \(g(x) = x + 7 \)
D. \(f(x) = x + 6 \)
 \(g(x) = x + 7 \)

9. Given the graphs of \(y = f(x) \) and \(y = g(x) \), what is the value of \(g(f(-1)) \)?

![Graph of y = f(x) and y = g(x)]

A. \(-2\)
B. \(-4.5\)
C. \(-3.5\)
D. \(-5\)

10. Use these tables. What is the value of \(f(f(0)) \)?

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>18</td>
</tr>
<tr>
<td>-2</td>
<td>11</td>
</tr>
<tr>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

A. \(-2\)
B. \(2\)
C. \(6\)
D. \(0\)
11. The function \(h(x) = g(f(x)) \) is the composite of \(f(x) = 2 - x \) and \(g(x) = \frac{1}{\sqrt{x}} \). What is the domain of \(h(x) \)?

A. \(x < -2 \) or \(x > 0 \)
B. \(x > 0 \)
C. \(x < 2 \)
D. \(-2 < x < 0\)

12. For the function \(h(x) = (6 - x)^2 \), what are possible functions \(f \) and \(g \) so that \(h(x) = f(g(x)) \)? Avoid trivial if non-MC.

A. \(f(x) = x \) \(g(x) = 6 - x^2 \)
B. \(f(x) = 6 - x^2 \) \(g(x) = x \)
C. \(f(x) = 6 - x \) \(g(x) = x^2 \)
D. \(f(x) = x^2 \) \(g(x) = 6 - x \)

13. Given the functions \(f(x) = \sqrt{2 - x} \) and \(g(x) = x^2 + 3x \), what expression is \(g(f(x)) \)? For non-MC, expand and simplify.

A. \(x^2 - 2x + 2 \)
B. \((x^2 + 3x)\sqrt{2 - x} \)
C. \(\sqrt{2 - 3x + x^2} \)
D. \(2 - x + 3\sqrt{2 - x} \)

Moderate (Show work for non-MC)

14. Use the graphs of \(y = f(x) \) and \(y = g(x) \). What are the domain and range of \(y = f(x) - g(x) \)?

A. Domain: \(x \in \mathbb{R} \)
 Range: \(y \leq -6 \)
B. Domain: \(x \geq -6 \)
 Range: \(y \in \mathbb{R} \)
C. Domain: \(x \geq -6 \)
 Range: \(y \leq 12 \)
D. Domain: \(x \leq -6 \)
 Range: \(y \leq 12 \)
15. Use the graphs of \(y = f(x) \) and \(y = g(x) \). What are the domain and range of \(y = f(x) \cdot g(x) \)?

\[
\begin{array}{ll}
\text{A. Domain: } x \in \mathbb{R} & \text{C. Domain: } x \geq 4 \\
\text{Range: } y \leq 2 & \text{Range: } y \in \mathbb{R}
\end{array}
\]

\[
\begin{array}{ll}
\text{B. Domain: } x \in \mathbb{R} & \text{D. Domain: } x \in \mathbb{R} \\
\text{Range: } y \leq 4 & \text{Range: } y \in \mathbb{R}
\end{array}
\]

16. Given \(f(x) = |x - 5| \) and \(g(x) = \frac{1}{x} \), what is the domain and range of \(h(x) = f(x) + g(x) \)?

\[
\begin{array}{ll}
\text{A. Domain: } x \neq 0 & \text{C. Domain: } x \neq 5 \\
\text{Range: } y \leq 5 & \text{Range: } y \in \mathbb{R}
\end{array}
\]

\[
\begin{array}{ll}
\text{B. Domain: } x \neq 0 & \text{D. Domain: } x \geq 5 \\
\text{Range: } y \in \mathbb{R} & \text{Range: } y \leq 5
\end{array}
\]

17. For the functions \(f(x) = x + 2 \) and \(g(x) = x^2 - 5 \), which expression has the greatest value?

\[
\begin{array}{ll}
\text{A. } g(f(3)) & \text{B. } f(g(5)) \\
\text{C. } g(f(-2)) & \text{D. } f(g(-2))
\end{array}
\]

18. For the function \(h(x) = (x - 2)(x - 4) \), what are possible functions \(f \) and \(g \) so that \(h(x) = f(g(x)) \)? Avoid trivial if non-MC.

\[
\begin{array}{ll}
\text{A. } f(x) = x - 4 & \text{B. } f(x) = x - 2 \\
\text{ } g(x) = x^2 - 2 & \text{ } g(x) = x - 4
\end{array}
\]
19. Here are the graphs of \(y = f(x) \) and \(y = g(x) \). What graph below is the graph of \(y = \frac{f(x)}{g(x)} \)?

![Graphs of \(f(x) \) and \(g(x) \)]

A. ![Graph A]
B. ![Graph B]
C. ![Graph C]
D. ![Graph D]

20. Given the functions \(f(x) = 2x + 4 \) and \(g(x) = \sqrt{x + 3} \), what is the value of \(a \) for which \(f(g(a)) = 4? \)

A. 6
B. 0
C. 1
D. −3
21. For the function \(h(x) = \frac{x - 1}{x^2 + 2} \), what are possible functions \(f \) and \(g \) so that \(h(x) = f(g(x)) \)? Avoid trivial if non-MC.
 A. \(f(x) = x - 1 \)
 \(g(x) = \frac{1}{x^2 + 2} \)
 B. \(f(x) = x - 1 \)
 \(g(x) = \frac{x}{x^2 + 2} \)
 C. \(f(x) = \frac{1}{x^2 + 2} \)
 \(g(x) = x - 1 \)
 D. \(f(x) = \frac{x}{x^2 + 2} + 3 \)
 \(g(x) = x - 1 \)

22. The function \(h(x) = g(f(x)) \) is the composite of \(f(x) = x^2 \) and \(g(x) = \frac{1}{x - 8} \). Which is an explicit equation for \(h(x) \), and what are the restrictions on \(x \)?
 A. \(h(x) = \frac{1}{x^2 - 8} \)
 \(x < -\sqrt{8} \) or \(x > \sqrt{8} \)
 B. \(h(x) = \frac{1}{x^2 - 8} \)
 \(x \neq -\sqrt{8} \) and \(x \neq \sqrt{8} \)
 C. \(h(x) = \frac{1}{(x - 8)^2} \)
 \(x > 8 \)
 D. \(h(x) = \frac{1}{(x - 8)^2} \)
 \(x < 8 \)

23. Given \(f(x) = (x - 4)^2 \), and \(g(x) = \sqrt{x} \), what is an explicit equation for \(g(f(x)) \)? For non-MC, expand and simplify.
 A. \(g(f(x)) = x - 8\sqrt{x} + 16 \)
 B. \(g(f(x)) = x - 4 \)
 C. \(g(f(x)) = |x - 4| \)
 D. \(g(f(x)) = x + 8\sqrt{x} - 16 \)

24. Given \(f(x) = \sqrt{6 - x} \) and \(g(x) = x^2 + 4x - 2 \), which is an explicit equation for the composite function \(h(x) = g(f(x)) \), and what is its domain? For non-MC, expand and simplify.
 A. \(h(x) = 4 - x \)
 \(x \in \mathbb{R} \)
 B. \(h(x) = \sqrt{4 - x} \)
 \(x \leq 4 \)
 C. \(h(x) = 4 - x + 4\sqrt{6 - x} \)
 \(x \leq 6 \)
 D. \(h(x) = \sqrt{-x^2 - 4x + 8} \)
 \(x \geq 0 \)
Short Answer

Easy

25. Given the functions \(f(x) = 2x - 3 \) and \(g(x) = x^2 - 1 \), determine each value below.
 a) \(g(f(-1)) \)
 b) \(g(g(-1)) \)

26. Given \(f(x) = -5x - 4 \) and \(g(x) = 3x - 3 \), write an explicit equation for \(p(x) = f(x) \cdot g(x) \). Expand and simplify.

27. Given the functions \(f(x) = 3x + 6 \) and \(g(x) = \sqrt{x + 6} \), determine an explicit equation for \(f(g(x)) \), then state its domain. Expand and simplify.

28. Given the functions \(f(x) = 6x + 6 \) and \(g(x) = \sqrt{x + 2} \), determine an explicit equation for \(g(f(x)) \), then state its domain. Expand and simplify.

29. Given the functions \(f(x) = \sqrt{x} \) and \(g(x) = 5x^2 + 8x \), determine an explicit equation for \(g(f(x)) \), then state its domain. Expand and simplify.

Moderate (Show work for non-MC)

30. Given \(f(x) = \sqrt{3 - x} \) and \(g(x) = \sqrt{x + 2} \), write an explicit equation for \(d(x) = f(x) - g(x) \), then determine its domain.

31. Given the function \(y = \frac{\sqrt{x + 2}}{x} \), determine possible functions \(p \), \(q \), and \(r \) so that \(y = p(x) \cdot q(r(x)) \).

32. Given the functions \(f(x) = 2 - x^2 \), \(g(x) = \frac{1}{x + 3} \), and \(k(x) = \sqrt{x} \), determine an explicit equation for \(q(x) = f(x) \cdot k(g(x)) \), then state its domain. Expand and simplify.
33. Given the functions \(f(x) = x^2 + 3x + 2 \) and \(g(x) = \frac{5x - 2}{x - 1} \), determine each value below.

a) \(f(g(2)) \)

b) \(g(f(-3)) \)

34. Use composition of functions to determine whether the functions \(f(x) = \frac{1}{2} x + 8 \) and \(g(x) = 2x - 16 \) are inverse functions.

35. Given the functions \(f(x) = |4 - x| \), \(g(x) = (x - 4)^2 \), and \(h(x) = \sqrt{x} \), determine each value below. Expand and simplify.

a) \(h(g(f(2))) \)

b) \(f(g(h(2))) \)

36. Given \(f(x) = \frac{x - 2}{4} \) and \(g(x) = 2x^2 + 4 \), determine an explicit equation for \(f(g(x)) \), then state its domain and range. Expand and simplify.

Problem

Moderate (Show work for non-MC)

37. Given \(f(x) = 2x + 1 \) and \(g(x) = x^3 - 3 \), determine an explicit equation for each composite function, then state its domain and range. Expand and simplify.

a) \(f(g(x)) \)

b) \(g(f(x)) \)

Show your work.
38. Given \(f(x) = -x + 2 \) and \(g(x) = 2x^2 - 3x \), determine an explicit equation for each composite function, then state its domain and range. Expand and simplify.
 a) \(f(\{g(x)\}) \)
 b) \(g(\{f(x)\}) \)
 c) \(f(\{f(x)\}) \)
 d) \(g(\{g(x)\}) \)

Show your work.

39. Use the graphs of \(y = f(x) \) and \(y = g(x) \).
 a) State the domain and range of \(y = f(x) \).
 b) State the domain and range of \(y = g(x) \).
 c) Sketch the graph of \(y = f(x) \cdot g(x) \).
 d) What is the domain of \(y = f(x) \cdot g(x) \)? How is it related to the domain of \(y = f(x) \) and \(y = g(x) \)?
40. Use the graphs of \(y = f(x) \) and \(y = g(x) \).
 a) Determine the value of \(a \) for which \(f(g(a)) = -2 \)
 b) Determine the value of \(b \) for which \(g(f(b)) = 2 \)
 Show your work.

 ![Graphs of \(y = f(x) \) and \(y = g(x) \)]

41. Explain why the composition of two linear functions \(f(x) = ax + b \) and \(g(x) = cx + d \) is also a linear function. Give a numerical example to illustrate your answer.

Difficult (Show work for non-MC)

42. Given the function \(y = \sqrt{x^2 + 6x + 5} \), determine possible functions \(f, g, \) and \(h \) so that \(y = f(g(h(x))) \). Describe your strategy.